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Abstract- The governing equations of motion for antisymmetric vibrations of a general multi­
layered conical shell consisting of an arbitrary number of specially orthotropic material layers have
been derived using the variational principles. The analysis considers bending, extension, in-plane
shear and transverse shear deformations in each of the layers and also includes its rotary, longitudinal
translatory and transverse inertias. The Galerkin method has been applied for finding the approxi­
mate solution of the shell. The correspondence principle of linear viscoelasticity has been used for
evaluating the damping effectiveness of the shells consisting of elastic and viscoelastic layers. A
computer program has been developed for antisymmetric vibrations of a general multilayered
conical shell consisting of an arbitrary number of elastic and viscoelastic layers. Variation of
resonance frequencies and the associated system loss factors with shear parameter and thickness
ratio parameter for all families of modes of vibration has been reported for three-, five- and seven­
layered conical shells with three sets of classical end conditions: simply supported at both ends,
clamped-damped and free-free. Copyright 1996 Elsevier Science Ltd.

I. INTRODUCTION

The multilayered conical shell construction is widely used in aircraft, missile, and spacecraft
structures. A number of papers have been published on the vibration and damping analysis
of beams, plates and shells in constrained or unconstrained arrangement. Most of these
works have been reviewed by Nakra (1984). However, not much work has been done on
the vibration of multilayered conical shells. A complete survey of the work up to 1964, on
static and dynamic analysis of sandwich structures has been reported by Habip (1965).
Extensive review work on the vibration of shells has been reported by Bert and Egle (1969)
and Leissa (1973). Bert and his team of researchers have reported an exhaustive work on
free vibrations oflayered shells [e.g. Bacon and Bert (1967), Bert and Ray, (1969), Siu and
Bert (1970), Wilkins et al. (1970)]. Bacon and Bert (1967) presented a general method for
determining the vibrational behaviour of arbitrary open-ended sandwich shells of revol­
ution, using Rayleigh-Ritz technique and reported numerical results for the case of freely
supported edges. Love's (1944) first approximation shell theory with transverse shear
deformation and added sandwich effects has been used and all components of translational
and rotary inertias have been included in their analysis. Double curved shells of revolution,
in their work, have been approximated by a finite number of truncated conical shell
elements. Wilkins et al. (1970) presented an analysis of free vibrations of sandwich conical
shells, considering facings and core of orthotropic materials and all components of trans­
lational and rotary inertias were included. In their investigation, the core was capable of
resisting transverse shear, but not bending, extension or in-plane shear, and the facings
resisted extension, bending and transverse and in-plane shear. The material damping was
neglected. In their analysis, the Galerkin method was used for finding the solution of the
shell with various boundary conditions. Another analysis for free vibrational modes of
sandwich conical shells with free edges has been presented by Siu and Bert (1970). Using
Rayleigh-Ritz method, they reported numerical results and compared these with exper­
imental data for conical frustum shel1s of homogeneous isotropic material and of sandwich
construction with specially orthotropic facings and core. In the analysis presented by
Chandrasekaran and Ramamurti (1982) for free vibrations of layered truncated conical
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shell with various boundary conditions, rotary inertia has been neglected and individual
layers in the shell have been made of special orthotropic material. They reported results for
two-layered conical shell using two methods-finite element method and Rayleigh-Ritz
method and also verified the results experimentally.

A literature survey of the field of dynamic analysis of conical shells indicates that no
well-documented work is available on vibration and damping analysis of multilayered
conical shell with elastic and viscoelastic layers, in which transverse shear deformation,
along with extension and bending of layers and transverse, rotary and longitudinal trans­
latory inertias of the shell, have also been included. The present work is an effort in this
direction.

In the present paper, the governing equations of motion for vibrations of a general
multilayered conical shell, having an arbitrary number of orthotropic material layers, have
been derived using the variational principles. In the present analysis, extension, bending,
in-plane shear and transverse shear in all the layers have been considered, and transverse,
longitudinal translatory, and rotary inertias are taken into account. Love's first approxi­
mation shell theory with transverse shear strain added is used and solutions are obtained
by Galerkin's method. The correspondence principle of linear viscoelasticity has been used
for evaluating the damping effectiveness of conical shells with elastic and viscoelastic layers.
A computer program for determining the resonance frequencies and the associated system
loss factors for various families of modes of antisymmetric vibrations of a general multi­
layered conical shell consisting of an arbitrary number of specially orthotropic elastic and
viscoelastic layers has been developed. The program has been validated for the vibration
of elastic two- and three-layered conical shells (Wilkins et al., 1970; Chandrasekaran and
Ramamurti, 1982), and also for the resonance frequencies and the associated system loss
factors of the multilayered cylindrical shells (Alam and Asnani, 1984). The variations of
the resonance frequencies and the associated system loss factors for various families of
modes for antisymmetric vibrations of multilayered conical shells consisting of alternate
elastic and viscoelastic layers with the shear parameter and the thickness ratio parameter,
are reported for various edge conditions.

2. GOVERNING EQUATIONS OF MOTION

The cross-section of an N-Iayered truncated conical shell is shown in Fig. 1. The
curvilinear coordinate system is employed with displacements u, v, and w in X, <jJ, and Z
directions, respectively. The assumed deformation patterns in the circumferential and the
meridional directions have also been shown in the figure. It is assumed that the deflections
are small and the material of the layers is specially orthotropic. The normal cross-sections

Fig. l. Assumed deformation pattern in the miltilayered conical shell.
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in all the layers are assumed to remain plane and continuous before and after deformations.
The deformations in the layers take account of bending, extension, in-plane shear and
transverse shear. It is assumed that there is no interface slip between the layers.

The deformations U ci and V ci in the ith layer along X and ¢ directions at a distance Zi

from the middle of this layer are given as

(1)

The strain components for the curvilinear coordinate system in the ith layer of shell are
(Love, 1944)

(2)

where ri = (R Oi +x sin (X +ZiCOS e<) and Uzh v,,, and Hi are displacements in the ith layer of the
shell in X, ¢, and Z directions, respectively, and subscripts .n .\? and .z denote the partial
derivatives with respect to x, ¢, and z, respectively.

Let

(3)

On substitution of eqns (1) into eqns (2) and using eqn (3), the expressions become
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Strain energy U of the shell is given by

(4)

INfffU =:2 i~1 x </J c [((J,J;{c,J,+ ((J</J</J)Je.p",) ,+ (1"",c),(Y",J,+ (rzx)JYcJ,

+ (rx</J)JYx</J),K- 1 dz d¢ dx. (5)

The material of each layer of the shell is considered to be specially orthotropic, and as such
has six independent elastic constants that are pertinent. For the ith layer, these elastic
constants are (E,)" (E</J)" (G",J" (GcJh (G,,,,), and (v,,,,),.

The stress-strain relationship for each layer can be expressed as

(6)

where the material constants are

(QII)/ = (E')i
[1 - (v,,,,)Jv.px)J

(Qdi = (E,~,,)/_._
[1- (v,,,,)Jv,,,x),]

(v",Ji(E')i
(Qll)'=---­

[1- (V'J')i(Vq,J,]

(Qll)i = (v,q,)JE"')i
[1- (v,q,)JV'il'),]

(v</J,)/(E,)i = (v,q,)i(E,b)i making (QI1)i = (Qll),

(Q66)i = (G,q;),; (C4)i = (G,,,J/; (C ss ), = (G,J/. (7)

Using eqns (4) and (7) and performing the integration over Z, the expression of the
strain energy U may be obtained [see Appendix, eqn (AI)].

The kinetic energy of the multilayered conical shell is given by

(8)

where ( .) denotes the differentiation with respect to time.
Using eqn (I) and performing integration over Z, the kinetic energy may be obtained

[see Appendix, eqn (A3)].
The work done by the external excitation forcesf(x, ¢) get) is given by
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w = LJ/(X, ¢)g(f)W d¢ dx.
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(9)

Performing the variation term by term and making use of Hamilton's principle, the gov­
erning equations of motion and boundary conditions are obtained [see Appendix: eqns
(A4)-(A6)].

3. SOLUTION FOR ANTISYMMETRIC VIBRATIONS OF MULTILAYERED CONICAL
SHELLS

The Galerkin method has been applied for finding the approximate solution with
various boundary conditions at edges, i.e. simply supported edges, clamped edges and free
edges by assuming suitable solution functions.

The simple support boundary condition at the edges is defined here as zero dis­
placements in the circumferential and transverse directions and the unrestricted dis­
placement in the meridional direction, and so the assumed solution functions have been
taken as

Y. mnx
Ui = L: Ui.mJcos-L-sinJ¢sincot

m=!

T_ mnx
Vi = L Vi.mJsin-

L
cosJ¢sinwt

m= 1

x mnx
w= n~1 W.mJsinTsinJ¢sinwt (10)

where m = 1,2,3,4, ... , nand J = 1,2,3,4, ...
The clamped-elamped boundary condition at the edges is defined here as zero dis­

placements in the circumferential, transverse, and meridional directions, and so the assumed
solution functions have been taken as

x mnx
Ui = L: Ui.mJsin--sinJ¢sinwt

m~l L

x mnx
Vi = L: VUnJ sin--sin J¢ sin wt

III~I L

x mnx
W = L: W.IIIJ sin-- sin J¢ sin wf

III~I L
(II )

where m = 1,2,3,4, ... , nand J = I, 2, 3, 4, ...
For the free edge boundary condition, the forces and the moments must be zero. It is

very difficult to find a set of simple trigonometric series which will satisfy the involved
differential equations of these boundary conditions. From the fact that the displacements
and the rotations at the free edges will always be unrestrained, the series of cosine functions
having non-zero values at the edges are taken as solution functions,

x mnx
Ui = L: UUIIJcos--sinJ¢sinwf

111=1 L

x mnx .
Vi = L: Vi. I1IJcos- -COSJ¢Slllwt

m~1 L
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(12)

where m = 0, 1,2,3,4, ... ,n and J = 1,2,3,4,5, ...
The excitation may be expanded as

xc mnx
F= I FmJsin--sinJ¢sinwt.

m~1 L
(13)

A set of error functions is generated by the substitution of the solution functions [the
assumed displacement equations (10) or (11) or (12) as the case may be] in the governing
differential equations of motion (A4)-(A6). These error functions are weighted by assumed
solution functions (coefficients of the displacements V i. lh Ui.2h V,.3J,"" V i•mh V i• lh V i•2h

V i •3h .. ·, V i •mh W 1h W 2J, W 3h ... , WmJ. All these weighted errors, integrated over the
entire conical shell, are set equal to zero. The integrals with respect to coordinate X over
the slant length L are evaluated by numerical integration. The four-term (m = 1, 2, 3, 4)
solution is taken for shells with simply supported edges and clamped edges, and five-term
(m = 0, 1, 2, 3, 4) solution for shell with free edges. Thus a set of m(2N+3) number of
simultaneous algebraic equations are obtained which can be written in standard eigen value
form as follows:

(14)

where column vector [X] = [VI •1h V 2. lh V 3. 1J,···, V(N+I).lh Vl.2h V 2.2h U3.2J,···,

V(N+I).2J'··" V I .mJ, U2.mh V 3.mh ···, V(N-Il.mh Vl.lh V 2,lh V 3. lh .. ·, V(N+l).lh VI.2h V 2.2J,

V 3,2J"'" V(N+Il.2h···, VI,mh V 2.mJ, V 3.mh ···, V(N+ll.mh W lh W 2h W 3h ···, WmJ]T

A and B are square matrices of order m(2N+ 3). The elements of these matrices are
the functions of the geometric and material properties of the shell. Replacing the real moduli
by the complex moduli according to the correspondence principle of linear viscoelasticity for
harmonic motion, the coefficients of the terms of the above sets of simultaneous algebraic
equations will become complex. After transforming the set of equations into standard eigen
value form, all eigen values of the matrix are evaluated. The eigen values w 2 give the
resonance frequencies and the associated system loss factors for the coupled modes of the
antisymmetric vibrations of the shell. The real part of the eigen value is the square of the
resonance frequency in radians per second, and the ratio of the imaginary part to the real
part of the eigen value is the associated system loss factor '7, (Rao and Nakra, 1974). It has
been shown that '7, is the ratio of the imaginary to the real part of the generalised complex
stiffness and also the ratio of energy dissipated per cycle to the maximum strain energy
during a cycle (Ungar and Kerwin, 1962).

The above procedure has been programmed to compute the resonance frequencies and
the associated system loss factors for all the modes of families of modes of antisymmetric
vibrations and the corresponding modal vectors of a multilayered conical shell,

For a general N-Iayered shell, there are m(2N+3) families of coupled modes. These
are identified according to the predominant displacements. For a given value ofJ, m(2N+3)
values of ware obtained, The displacement ratios

Vl.mJ U2.mJ U3.mJ
~- -~~-W

mJ
' W

mJ
' W

mJ
, •.• ,

V(N _ 11.mJ V 1.mJ V 2 •mJ V 3.mJ
----

Wml 'W
mJ

' WrnJ ' W
mJ

' ... ,

are computed from the solution of simultaneous equations. Corresponding to Mode I
(radial), values of the displacement ratios are small and this mode is also obtained when
only the transverse inertia effect is considered. For families of modes due to (exten­
sion + torsion) of the layers of multilayered shell, designated as Modes II and III, the
displacement ratios
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Ul.rnJ UZ,rnJ U 3 ,mJ U(N+ l),rnJ-- ----
W

rnJ
' W

rnJ
' W

rnJ
' ' , , , W

rnJ

are of the same sign and so are the displacement ratios

Vl,rnJ V1,rnJ V3 ,rnJ V(N+l),mJ-- ----
W

rnJ
' W

rnJ
' W

rnJ
,"', W

mJ
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Families of Modes IV, V, VI and VII are mainly core thickness shear type, A pair or more
pairs of elastic layers move in opposite directions causing shear of viscoelastic cores in
meridional and circumferential directions, The total number of such modes in N-Iayered
shell are (N - 1), In the remaining (N+ 1) modes, for N-Iayered shell, some of the dis­
placement ratios

and

etc" are of opposite sign, Similarly

and

U 2.rnJ U 3,rnJ
----
WrnJ ' WrnJ

V2,rnJ V 3,mJ----
WrnJ ' WmJ

and

and

etc" are of opposite sign and they are designated as mainly elastic layer thickness shear
type,

4, COMPARISON WITH REPORTED RESULTS

The validation of the presently developed analysis has been accomplished by comparing
the results obtained by the analysis with the results reported by several investigators
(Weingarten, 1965; Siu and Bert, 1970; Wilkins et ai" 1970; Chandrasekaran and Ram­
amurti, 1982; Alam and Asnani, 1984), The natural frequencies of a sandwich conical shell
consisting of elastic layers with various end conditions have been determined (Table 1) with
the present analysis for data:

Table I. Comparison with analytical frequencies for simply supported, clamped~lampedand free-free sandwich
conical shells reported by Wilkins et al. (1970)

Simply supported Clamped~lamped Free-free
J m= I m = 2 m= I m= 2 m= I m = 2

2 135.57 311.40 188,83 358.12 12,64 188.70
(I 34.8)t (310,9) (177,2) (340.1) (13,3) (179,9)

3 85,88 213.27 135.65 278,11 33,98 135.78
(86,8) (212,8) (126,0) (254,3) (35,0) (130.2)

4 84.22 165.78 117,08 239.48 64.42 117,98
(85,7) (165.4) (110.7) (209.7) (65.3) (115.7)

5 112.17 160,91 130.44 231.27 101.43 134.10
(113.3) (160.6) (126,7) (197.7) (101.8) (133.8)

6 153.21 189,02 166,55 247,78 143.74 175,60
(153.7) (188,9) (163,5) (214.8) (143.3) (175,6)

7 201.72 236.68 216.45 284.22 192,61 231.30
(201.5) (236,5) (212,3) (254,5) (191.1) (229.7)

8 257,04 294.96 275.62 336.46 248.32 295.44
(256.2) (294.1) (269.1) (310.0) (245.7) (290.5)

9 318.98 361.18 342.08 401.40 310.48 365.94
(317 .3) (358.7) (332.7) (376.1) (306,7) (357.8)

t Values in parentheses are from table reported by Wilkins et ai, (1970),
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IY. = 5.01',

L = n.5in,

Ro I = 22.290 in,

R 02 = 22.450 in,

R03 = 22.609 in,

t l = 0.021 in,

t2 = 0.3 in,

t 3 = 0.021 in,

£,1 =£'3 =£</>1 =£</>3 =3.64xl06 Ibin- 2,

G=x2=3.2xI04Ibin 2,

Grid = 1.83 x 104Ibin~2,

V,¢I = V,</>3 = V¢xI = V</>x3 = 0.2,

PI = P3 = 0.265 X 1O~31bs2 in 4

P2 = 0.3368 X 1O~51bs2 in~4,

where suffix 1 is for inner face layer, 2 for core, and 3 for outer face layer of the sandwich
conical shell. For the simply supported case, agreement with the reported results is quite
good. Frequencies for the c1amped--damped and free-free sandwich conical shells with the
present analysis are found to be somewhat different from those reported by Wilkins et al.
(1970). This difference in values can be attributed to the difference in boundary conditions
in the two analysis.

The resonance frequencies and associated system loss factors for three-layered cyl­
indrical shells (two elastic face layers sandwiching a viscoelastic core) have been computed
with the present analysis by taking the cone apex angle IY. to be zero, and are shown in Fig.
2 and these have been found to be in close agreement with results reported by Alam and
Asnani (1984). Also, agreement of results with the ones reported by Weingarten (1965),
Siu and Bert (1970) and Chandrasekaran and Ramamurti (1982) is found to be quite
satisfactory.

Multilayered conical shell
Multilayered conical shells taken for investigation are cone frustums, consisting of

elastic stiff layers sandwiching relatively soft viscoelastic core layers. The shear parameter
t5 has been defined as the ratio of the in-phase component of the shear modulus (Gx </» of
the viscoelastic cores to the Young's modulus (£) of the elastic layers and the thickness
ratio parameter V is defined here as the ratio of thickness of the viscoelastic layer to that
of the elastic layer. Poisson's ratio (v) of the elastic material is taken to be 0.3 and the ratio
of Poisson's ratio of the viscoelastic material to that of the elastic material is taken to be
1.33. The ratio of mass density (p) of viscoelastic to that of elastic material is taken to
be 0.5. The loss factor 17 of the viscoelastic core in shear, as well as in extension, is taken
to be 0.5. The other parameters are (i) R I;L is taken to be 0.1 (here R I is the inner radius,
and L is the slant length of the shell); (ii) T/R I is taken to be 0.5 (here T is the total
thickness of the shell); (iii) IY., the cone apex angle is taken to be 5': and (iv) J, the
circumferential mode number, is taken to be 1.

5. RESULTS AND DISCUSSION

Parametric studies have been undertaken to provide a complete understanding of the
vibration and damping behaviour ofthree-, five- and seven-layered conical shells consisting
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Fig. 2. Comparison with results for three-layered cylindrical shell reported by Alam and Asnani
(1984).

of alternate elastic and viscoelastic layers by varying the parameters: (i) shear parameter
6; and (ii) thickness ratio parameter V. Three sets ofclassical end conditions are investigated
herein: Simply supported at both ends, clamped-damped and free-free.

Results have been presented for the shell with data for the face elastic layer as follows:

Young's modulus: E, = E1> = 3.64 x 1061b in- 2 = 0.252874 x lOll N m- 2
,

Shear modulus: GX 1> = G1>c = Gc = 1.399994 x 1061b in- 2 = 0.972591 x 1010 N m- 2
,

Density: p = 2.65 x 1O- 4 1b S2 in- 4 = 0.28535327 x 104 Ns2 m- 4
,

Thickness: t = 0.03 in = 0.762 x 10- 5 m,
Radius: R I = 7.2 in = 0.18288 m.

In the analysis, the designation m 1 denotes the lowest resonance frequency and its
corresponding system loss factor; m 2 denotes the second lowest frequency, etc. For a three­
layered sandwich shell, families of modes have been shown for ml and m2, whereas for the
sake of clarity in figures for multilayered shells the curves have been drawn for the first
lowest frequencies only and their corresponding system loss factors for families of modes.

Figures 3-11 show the variation of resonance frequency wand associated system loss
factor Yfs with shear parameter 6 for antisymmetric vibration of three-, five- and seven­
layered conical shells with simply supported, clamped-clamped and free-free end conditions
forV=10.

(a) Effect of6 on multilayered conical shells with simply supported edges
Variation of wand Yfs with 6 for multilayered shell with simply supported edges is

shown in Figs 3-5.
w for Mode I (radial) of three-layered sandwich shell remains nearly constant for

lower values of 6, it increases marginally at b = 10-5 and then decreases slightly with further
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Fig. 3. Variation of wand IL with ii for antisymmetric vibration ofa simply supported three-layered

conical shell.

increase of b, whereas OJ for this mode of five- and seven-layered shell, has no appreciable
change for the chosen range of b. '1s for this mode of sandwich shell increases up to b = 10-4

and then starts decreasing for further increasing values of b, whereas 1Js for this Mode I for
five- and seven-layered shells increases with b. There is increase in '1, for this mode for a
particular value of b when the number of layers in the shell are increased from three to five,
but this increase is only marginal when the number oflayers are further increased to seven.

OJ for Modes II and III (meridional + torsional) for the multilayered shell have no
appreciable change with b, only a small increase is observed for higher values of b. '1s for
Modes II and III of a three-layered sandwich shell increases in the lower range of b, reaches
a maximum ( = 0.0008) and then decreases slightly with the higher values of b. '1s for Mode
II for five- and seven-layered shells increases with b. 1Js for Mode III decreases marginally
with the increase of b for five-layered shell whereas for seven-layered shell, it decreases
considerably in the lower range of b, reaches a minimum (0.0035), and then again increases
with higher values of b.

It is thus observed that '1s for Modes II and III (meridional + torsional) is small for a
three-layered shell in comparison to the corresponding values for a five-layered shell,
specially at a lower values of b. A seven-layered shell seems to give higher values of '1s for
these modes for a certain range of b and the reverse trend is noticed in some other range
of b.
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Fig. 4. Variation of wand Yf, with <5 for antisymmetric vibration of a simply supported five-layered
conical shell.

w for higher-order modes, due to thickness shear of cores in the multilayered shell,
increases with b. '15 for these modes increases with b and it also increases with number of
layers in the multilayered shell for a particular value of b.

Thus for getting a uniformly high order of '1.1 for all families of modes, one should
choose higher values of b and more layers in the multilayered shell.

(b) Effect ofb on multilayered conical shells with clamped edges
Figures 6--8 show the effect of shear parameter b for multilayered shell with clamped

edges.
w for Mode I of multilayered shell has no appreciable change for the chosen range of

b. '1s for this mode increases with b for multilayered shell and there is increase in '1s for this
mode for a particular value of b when the number of layers in the shell are increased from
three to five, but this increase is observed to be only marginal when the number of layers
are further increased to seven.

w for Modes II and III for the multilayered shell have no appreciable change with b,
only a small increase is observed for higher values of b. '1.1 for these modes of three-layered
shell increases with the increase of b. '15 for Mode II of five- and seven-layered shells
increases with b, whereas '15 for Mode III of five- and seven-layered shells decreases in the
lower range of b, reaches a minimum and then starts increasing with further increase of b.
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Fig. 5. Variation of wand ry, with b for antisymmetric vibration of a simply supported seven-layered
conical shell.

wand 11, for meridional and circumferential core shear modes of multilayered shells
have the same trend of variation with 0 as those in the case of simply supported shells.

(c) Effect of0 on multilayered conical shells with/ree edges
Variation of wand "I., with 0 for multilayered shell with free edges is shown in Figs

9-11.
wand "Is for Mode I of the free-free multilayered shell follow the same trend of

variation with 6 as has been observed in the case of shells with clamped edges.
w for Mode II of three-layered sandwich shell increases with lower values of 0 and

remains nearly constant in the higher range, whereas w for Mode III of three-layered shell
decreases marginally with 0. w for Modes II and III for five- and seven-layered shells
remains almost constant in the chosen range of 6, only a small increase is noticed for higher
values of 6. "Is for these modes of three-layered shell increases with 6 whereas 11, for Modes
II and III for five- and seven-layered shells decreases in the lower range of 0, reaches a low
value in the intermediate values of 0 and then starts increasing with further increase of 0.

wand 11s for higher-order modes, due to thickness shear ofcore layers in the meridional
and circumferential directions, follow the same trend of variation with 0 as they have been
found to vary in simply supportedjclamped--clamped shells.
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Fig. 6. Variation of wand ry, with <1 for antisymmetric vibration of a clamped-damped three-layered
conical shell.

Variation of wand '1, with thickness ratio parameter V for antisymmetric vibrations
of three-, five- and seven-layered conical shells for three end conditions: simply supported
at both ends; clamped--elamped; and free-free for b = 10-4 are shown in Figs 12-20.

(d) Effect ofV on multilayered conical shells with simply supported edges
Variation of wand '1, with thickness ratio parameter V for multilayered shell with

simply supported edges is shown in Figs. 12-14.
There is a steep fall in w for Mode I (radial) for lower values of V (up to V < 10) and

then a marginal decrease is noticed in the higher range (V> 10) for sandwich shell. w for
this mode is high for three-layered sandwich conical shell, specially for lower values of V,
as compared with the five-layered shell. w for Mode I in five- and seven-layered shells
increases slightly from V = 0.5 to 5 and then a marginal decrease is observed with further
increase of V.

w for Modes II and III (meridional + torsional) in the multilayered shell increases in
the lower range of V (V < 7) and a decrease is observed with the higher values of V (V > 7).
This trend of increase/decrease reduces with further increase in number of layers.

'1s for Modes I, II, and III increases with V and there is only a marginal increase in '1,
of these modes with more number of layers. Thus for getting a high value of '1.< for these
modes, one should go for high values of V.
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Fig. 7. Variation of wand rr. with b for antisymmetric vibration of a clamped-damped five-layered
conical shell.

wand '1, for meridional and circumferential core shear modes increases with increasing
values of V. '1, is more for these modes with more number of layers in the multilayered shell
for a particular value of V. Thus one may come to the conclusion that a uniformly high
value of '1, for all families of modes are obtained for V> 10.

(e) Effect ofV on multilayered conical shells with clamped edges
Variation of wand '1, with V for multilayered shell with clamped edges is shown in

Figs 15-17.
w for Mode I (radial) for multilayered shell follows the same trend of variation with

Vas has been observed for the case of simply supported shell but '1s for this mode is found
to be more than that for the previous case.

w for Mode II of sandwich shell increases from V = 0.5 to 5, starts decreasing for
higher values of V (i.e. for V> 20). w for Mode III for three-layered shells increases with
lower values of V and decreases in the higher range of V (V > 10). Otherwise w for these
Modes II and III for five- and seven-layered shells increases in the lower range of Vand a
decrease is noticed with the higher values of V. '1\ for these modes vary in the same way as
has been found for the case of a simply supported case.

Also a similar trend is observed for wand '1s for higher-order modes due to thickness
shear of core layers in the meridional and circumferential directions as is seen for the shell
with simply supported edges.
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Fig. 8. Variation of wand Ij, with b for antisymmetric vibration of a clamped-damped seven-layered
conical shell.

if) Effect of V on multilayered conical shells withfree edges
Figures 18~20 show the variation of wand '1, with thickness ratio parameter V.
w for Mode I for the multilayered shell has no appreciable change for the chosen range

of V. w for Modes II and III for the multilayered shell increases in the lower range of V
and a decrease is observed with higher values of V. This trend of increase/decrease is
insignificant when there are more layers in the shell. '1, for these modes varies with V in the
same fashion as has been observed for simply supported/clamped--clamped shells.

wand '1, for meridional and circumferential core shear modes have the same trend of
variation with Vas has been noticed for the other two cases.

6. CONCLUSIONS

In the investigation of multilayered conical shells of constant total thickness with all
the three end conditions: simply supported at both ends, clamped--clamped and free-free,
it is observed that there is considerable increase in the system loss factor, particularly for
Modes I, II and III in the lower range of shear parameter (i.e. 6 :::; 10- 5

) when the number
of layers in the shell is increased from three to five, but the increase is only marginal when
the number of layers is further increased to seven. A remarkable increase in system loss
factors for these modes is found for increasing values of 6. The system loss factor for higher­
order modes, due to thickness shear of core, increases in the chosen range of b and it also
increases with the number of layers in the multilayered shell for a particular value of 6.
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Fig. II. Variation of wand 11, with (j for antisymmctric vibration of a free-free seven-layered
conical shell.
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Uniformly high values of the system loss factor for all families of modes of vibration
for multilayered conical shells, for all the three boundary conditions, are obtained for
V> 10, i.e. for thicker shells. The system loss factor is observed to be more for thickness
core shear modes with a higher number of layers in the multilayered shell for a particular
value of V.

In the present work, it is found that an increase in the number of layers increases the
maximum obtainable system loss factor for most of the modes of vibration, with proper
selection of the shear and thickness ratio parameters. For a uniformly high order of the
system loss factor for all families of modes, one should choose higher values of <5, V, and
more layers in the multilayered shell. .
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f(' I' \ . ( t' .'+ 2(Q")i l a" ~ + a" jru,., (I'i.f + u, sin x) -r U,. ],(1'" 1.'1' + U, t I sin x)1 + a" t -a" )

X lUi, (1'" 1'1' + U, I sin x) + u,. I., (I'"p + !Ii sin x)] + (ai7 i}rcos x(u,., + u, I I.,)}
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+ (C 55 )i[a" (1;\\", + U;_I + u; + 2u i + I "'''i - 2uiu,+ ,- 2Ui\\''';)] dq'> dx

where

('1[, 1 V' (, f;' cos 2 tl.

ai• = L" C,idzi = (Roi+xsiniX) + 12(Roi +xsiniX)'

f
' 2 I' cos x

a,s = -',2 z,CdZi = - 12(Ro'i+xsinx)'

f
',

a" = dZ i = I,
-1,2

1

", " I;'
Q"II = ~i dZ i = 2 .

• _',' I

Kinelic energy

[ (
1",+1-". ,)' aj). ., a"., .' ]}+Pi a" --2- + I; ([i-I -1',)- + 0'(1';+1 -Iii) dq'>dx
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(AI)

(A2)

(A3)

Governing equalions olmolion and boundary condilions/or anTisymmelric l'ibralions olmullilayered conical shell

[
1 I, 1 I; cos x 1 I; cos' iX] . .- . + - + - [(Q"j,SllliX(UiSlllX+Vi ¢)
3 (R Oi + x Sill x) 12 (Ro,+xsiniX)' 48 (ROi+xsin,x)' -- .

. [I Ii I I,' cos' x] .. .
+(Q66),(1·,.SlllX- Ui.¢¢)]+ -6 (R .) + 48 . ., [(Q"j, Sill (X(u i+ I Slll(X+V,+I.¢)

0, +XSlll (X (Ro,+x Sill x)

[
I I 1 I'COS(X I I'COS'(X ]

+(Q66),(l'i+l.¢sinx-u,+I.¢¢)]+ - '. + -' . + - --"----
2 (Ro,+XSlll(x) 12 (ROi+xsinx)' 24 (Ro,+xsiniX)'
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x (Q,,),w sin ~ cos 11+ (C55 )f(Rof +x sin (1) (i Ui - iU,+ I - lV,)-~li(QII ),[uf.x sin 11

+ (Ro, +xsin ~ -~Ii cos ,~)u,.xx] -~lf(QII ),[uf+ I.x sin 11 + (Ro, +xsin ,~)u,+ I.,J -tl,(QI ')i

-~If-I (QII )'-1 [U,_I., sin~+ (R Of _ 1 + x sin (1)uf_ I.,x] -~Ii-I (Q12),-1 (v,.", +~r,_I.'p,)

- ~If- 1(Q12)'- IlV, cos 11 -~I,_ I(Q" L- I(r fx" +~rf_ I",) +tp,t,(ROi + x sin~)

[for i = 1,2,3, ... , (N+ 1), these are (N+ I) equations].

1
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x (i'i+~i',-I)-~(Pil;-p'-II; tli',COSI1 = 0

[for i = 1,2,3.... , (N+ I), these are (N+ I) equations]. and

(AS)
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[
I [ 1 I' cos:x I ,3 cos' :x ]

+ -2 '. - -' , + 24' J [(Q'l),U'+1 sinIXcosiX+(Q'2)'I',+I.~cos:x
(Ro,+XSIll:X) 12 (Ro,+xsin:x)' (Ro,+xsin:x)'
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I I, 1 I~COS:X 1 I;COS':xJ .

+(C44),l\+I.~COSiX]+ -2 (R .) + -12 ., + 24 . [(Q,,),U,SIll:XCOSiX
0' +XSIll:X (Ro,+x Sill :x)' (Ro,+x Sill :x)]

+ (Q,,),v,.¢ cos IX + (C44 ),V,.• cos:x] - (C,,),t,[w, siniX+ (Ro,+x sin iX)w.xxl- (Css),[u,+ 1sin:x

+ (Ro,+xsin :x)u,+ 1.,1 + (C,,),[u, sin:x + (Ro,+x sin iX)u,.xl + (C44 ),(r. -v,. I..)

+PJ,(Ro,+xsin:X)lt·+/(x. ¢)g(I)} = O.

The boundary conditions obtained at x = 0 and x = L are either u, = 0 or:

~I,(Q1Jl,(Ro,+ x sin:x -~I, cos :x)u,., +;;',(QI 1),(Ro,+ x sin iX)U, + I.x

+~I,(Q12),(V, .• +uisin:x+~v" I.$+~U'+I sin:x+~wcos:X)+~I,_,(Q,,),_,(Ro, 1

+x sin iX+~I,_ 1cos :x)u,.x +;;"-1 (QII)' -I (Ro,. 1+x sin ,:x)u,_I.,

+~Ii I(Q12l.-I(l·,.• +uisin,:x+~vi_I .• +~U'_1 sin:x+~wcos:x) = 0

[for i = I, 2. 3, .... (N + 1), these are (N + I) equations]

either v, = 0 or:
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(A6)

(A7)

~t,(Q66),(Roi+ x sin:x -~Ii cos :X)l'i., +;;t,(Q66),(Ro,+ x sin :X)l\+ I.x +~I,(Q66),(Ui.¢ - v, sin:x
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+;;I'-I(Q66), .,(Ro,_, +xsin:x)v i ,,+*,, I(Q66L-I(u,.,p-l·,sin:x+~u, 1..~~Vi-1 sin:x) = 0 (AS)

[for i = 1.2.3, .... (N+ 1), these are (N+ I) equations]

and either w = 0 or

v

L [(Css),(Ro,+xsin:X)(I,w, +ui+1 -u,)] = O.
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